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Flexible Consumers Reserving Electricity and
Offering Profitable Downward Regulation

Nicolas Höning and Han La Poutré

Abstract—Previous work on demand response in smart grids
considers dynamic real-time prices, but has so far neglected to
consider how consumers can also be involved in planning ahead,
both for scheduling of consumption and reserving their ability
to regulate downward during balancing. This work models a
flexible consumer in a novel two-settlement electricity auction.
The consumer buys electricity on an ahead market and offers
downward regulation on the balancing market. Bidding in two-
settlement procedures is a hard problem and the use case of
a flexible consumer is a novel problem setting. This poses a
challenge for the design of smart ICT that automates bidding in
smart grid operations. In a decision-theoretic model that takes the
viewpoint of a flexible consumer, we implement a novel, unified
format that simplifies computation of bids and can make the
guarantee that offering downward regulation increases overall
utility. Simulations show that the unified format, when compared
to a benchmark format with two independent bids, attains the
same utility under a wide range of market conditions despite its
simplicity of use. Furthermore, it ensures that the consumer’s
offer for downward regulation is indeed executed with the UNI
format, which is often not the case with the benchmark format.

Index Terms—markets, balancing, flexibility, demand side
management, downward regulation

I. INTRODUCTION

Electricity markets in smart grids are populated by two
groups of actors: Those that pose the challenge to balance
supply and demand on short notice (by deviating from their
scheduled consumption or generation) and those who can
react to it. Up to now, the latter group traditionally consisted
mostly of generators that can ramp up quickly and few large
consumers who are able to regulate downwards.

The introduction of new technologies, appearing on both
the supply and the demand side, changes the nature of the
balancing challenge and makes it more relevant to the smart
grid community. First, renewable energy supply, which is of
intermittent (not perfectly predictable) nature, is becoming
more widespread and mature. Furthermore, more and more
energy demand at lower levels of our electricity systems is
becoming electrified. Electric vehicles (EVs) for transportation
and heat pumps for heating are becoming part of our daily
lives. Electricity storage technologies are pursued to alleviate
the expected dynamics in energy systems, but will be very
expensive in the foreseeable future.
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A significant part of the demand capacity on lower parts
of the grid will (to some extent) be flexible on short notice,
e.g. because it operates batteries, heating and cooling systems
or EVs. It will also be controllable by smart ICT. Thus,
many more market actors can soon contribute to resolving
imbalance, and demand response becomes a crucial ingredient
in smart grids. This development can be of use in all kind
of smart grid implementations, for example microgrids or
electronic market places with many actors.

Many market mechanisms trade electricity ahead of time,
and also reserve balancing power ahead of time. An ahead
market increases the number of actors who can take part
in bidding, and therefore lowers prices. And, because it
ensures that enough balancing capacity is available, it lowers
uncertainty. Planning ahead is also of great importance in
smart grid settings, but previous work on demand response
in smart grids has so far neglected to consider how consumers
can also be involved in planning ahead, both for scheduling
of consumption ahead of time and reserving their ability to
regulate downward during balancing.

A first inspiration on how to model market mechanisms
that combine scheduling and balancing for future smart grids
comes from current wholesale markets. The so-called two-
settlement procedure is being used in many power markets
around the world (e.g. [1], [2], [3]). It trades a continuous good
(electricity) in two different markets, each being a double-
sided auction. The first settlement clears an “ahead market”
(usually one day ahead of time, but shorter intervals are
possible in more dynamic market settings, e.g. in smart grid
settings). Bidders submit a bid to buy or sell some quantity
definitively. In addition, flexible suppliers submit a bid to the
ahead market for the provision of optional reserve electricity.
The second settlement then clears a ”balancing market”, in
which inflexible consumers can buy balancing electricity from
these previously procured reserves on short notice.

Bidding in the two-settlement procedure is complex and it
is hard to construct bids. We investigate the bid optimisation
problem of a flexible consumer on an ahead market that is part
of the two-settlement procedure. This consumer buys some
quantity on the ahead market and, due to his flexibility in
his scheduling, offers a part of this quantity as downward
regulation capacity on the balancing market. This is a task
we can expect to be performed by smart software agents who
control flexible consumption devices.

This work is based on a novel bid format for this complex
market design problem, proposed in [4], where the focus
was put on the generator side. This format unifies bids to
both markets, which simplifies the computation problem of
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bidders. This is useful in smart grids, where participants will
increasingly be required to perform fast and efficient decision-
making, in order to react with small delays. Furthermore, bid
functions can be submitted to the balancing market, which
increases efficiency of allocations. [4] also introduced a market
clearing mechanism for this unified bid format. In a parallel
companion work to this work (currently under review and
more tailored to computer science), we model the decision-
theoretic problem of bid construction for a generator. In this
paper, we deal with the novel use case of a flexible smart
grid consumer whose downward regulation can be reserved in
the ahead market. This use case adds the additional challenge
that the consumer forfeits utility of bought electricity for the
outlook of uncertain revenues on the balancing market.

This work advances the state of the art in the following
way: First, we adapt the unified bid format that was proposed
in [4] to be used by flexible consumer. We also describe a
market model in which it is possible to study the consumer’s
decision problem under uncertainty about market outcomes.
Second, when using the existing alternative of submitting
two independent bids to the ahead- and balancing markets,
a flexible consumer who offers downward regulation has no
guarantee that the revenues on the balancing market will
compensate the lost utility of the downward regulation. We
show that the unified bid format can make this guarantee for
the case that the bid represents marginal valuation (which is the
profit-maximising strategy in competitive markets), because
the consumer spends less money on the same amount of
electricity and also makes profits from selling downward
regulation. Finally, we show through parametrised Monte-
Carlo simulations that our unified format performs well, when
compared to a benchmark format with two independent bids.
It attains the same utility under a wide range of market
conditions and ensures that the consumer’s offer for downward
regulation is indeed executed. This is often not the case with
the benchmark format, in settings in which the consumer is
very uncertain about market outcomes or his own valuation of
electricity is much larger than the market’s valuation.

II. BACKGROUND

Modern electricity markets are centralised multi-unit auc-
tions, to which actors submit bids for buying or selling
electricity. We will first discuss bid formats and then broaden
the literature discussion towards market designs.

A very common (e.g. [5], [6], [7]) mathematical model
of bids in electricity markets, a so-called supply function, is
based on a quadratic representation of total production costs:
f(Q) = CQ + RQn. Q denotes a quantity of electricity and
C ∈ R and R ∈ R are coefficients. Also, C > 0, R > 0
and n > 1. (to model a consumer in the ahead market,
this work uses f(Q) = CQ − RQn). Klemperer and Meyer
(1989) [5] describe how supply functions combine Cournot
and Bertrand modelling approaches and are useful in multi-
unit auctions when market outcomes are uncertain. Supply
functions are considered to increase competition [8]. Cain and
Alvarado (2004) [9] argue that quadratic functions provide a
reasonable trade-off between an approximation of real-world

generation costs and favourable modelling properties, such as
good performance and smooth state transition behaviour in
calculus-based market clearing algorithms.

Concerning the level of detail that goes into a bid, there are
two general approaches to design markets for electricity [8],
[10]: Markets commonly known as “pools” (an approach
more popular in the US, e.g. the markets operated by PJM
and MISO [2]) require bidders to specify non-convex costs
and constraints of their operation (e.g. startup costs), which
are taken into account by the auctioneer, possibly through
side payments. Markets commonly known as “exchanges” (an
approach more popular in Europe, e.g. the APX or EEX)
do not allow to include such convexities in bids1. Exchanges
offer the advantage of low transaction costs: market clearing
requires the satisfaction of fewer constraints and can use a
fast convex solver. Furthermore, bids are easier to compute
(which is important for automated bidding and market clearing
in settings where many actors bid frequently, such as in smart
grids). Finally, bidders in both pools and exchanges will try
to maximise their profits by adapting their bids. For market
designers, the analysis of bidding strategies is easier when bids
are less detailed. In this work, we model an exchange market.

Concerning the general approach to market clearing, elec-
tricity markets have used uniform-price auctions (UPA) de-
signs, in which all participants pay or earn the same unit price.
The last decade has seen more markets designed as discrim-
inatory pricing auctions (DPA)[11], in which unit prices may
differ based on individual bids, for example the England and
Wales wholesale electricity market in March 2001. Generally,
UPA settings have been found to result in more efficient
allocations, but DPA designs lower prices and market power,
see for example Fabra et al. (2002) [12] and Damianov et al.
(2010) [13]. This paper models a DPA design.

Finally, we turn to balancing markets and the two-settlement
procedure described in Section I. Deregulated balancing mar-
kets are a relatively young phenomenon and they solve a prob-
lem unique to electricity markets. Therefore, several questions
about how to allocate reserve quantities and prices are not
yet settled. One important issue is how the market maker
procures reserve energy. The required optimal quantity is
currently chosen by static heuristics, for example based on
the capacity of the largest power plant, by remaining capacity
in definitely allocated generation facilities, or on a percentage
of historical peak capacity in the market. This paper uses a
version of the two-settlement procedure in which the market
maker allocates reserve capacity relative to definitely allocated
capacity. Another issue is whether power should only be paid
for when it is used for balancing or if the market should pay
for the availability of fast-startable reserve capacity, regardless
of whether it is put to use. The market model in this work uses
the former approach.

Although they are, at the time of consumption, delivered
together as an indistinguishable product, definitive and reserve
electricity are priced independently. An important question
for the market design is when to submit the supply bids for

1One exception is if the exchange allows bids for blocks of periods, but
this work looks at one-shot scenarios only.
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each type. In sequential approaches (submit bids for optional
electricity after the market for definitive electricity has been
cleared), re-commitments can lead to inefficient allocations
through strategic bidding. Therefore, most scientific literature
favours simultaneous approaches (submit at the same time).

However, a problem with simultaneous approaches is that
a bid in one market cannot refer to outcomes in the other
market. This can reduce the chances of reaching efficient
allocations. Only few proposals to tackle this problem exist.
For example, Virag et al. (2011) [14] propose an iterative
market design, where in each round the market maker proposes
two market prices and the market participants update the
quantities they would sell or buy at those prices. This runs until
conversion, but the runtime properties of this dynamic method
are uncertain. The problem has also been discussed in Höning
et al. (2011) [4], where a combined bid format is proposed
for the two-settlement procedure and a preliminary market
clearing mechanism was sketched as constraint satisfaction
problem. We will analyse this combined format in this work,
as described in Section I.

III. MODEL

We study the decision problem of a flexible consumer c,
who aims at maximising his utility. We define c’s utility as
the sum of the surplus from buying electricity in the ahead
market A and the profits of selling downward regulation in
the balancing market B. His task is to construct appropriate
bids for this. In this section, we describe the general form of
bids, markets A and B and c’s bid optimisation problem.

A. Mathematical representation of bids

A very common mathematical model of convex bids for
generation in electricity markets are so-called supply func-
tions, which are based on a quadratic representation of total
production costs (see Section II): f(Q) = CQ + RQn. The
marginal cost function is f ′, the derivative of f : f ′(Q) =
C + 2RQ (we assume n = 2, e.g. as in [7]). Marginal
cost functions are of special interest in economic theory,
as they are the profit-maximising bid of a supplier in a
perfectly competitive market [15]. To model the a consumer c’s
valuation of electricity, we assume a total valuation function
and a marginal valuation function, given by

Vc(Q) = vcQ− αcQn

V ′c (Q) = vc − 2αcQ
(1)

where vc denotes the maximal marginal valuation and 2αc
denotes the slope of the marginal valuation function. The slope
is negative and thus models diminishing marginal valuation:
the value of each bought unit decreases with increasing quan-
tity. A bid in our market model is a linear function, mapping
unit prices ρ to quantities. The demand bid for c is based on
the inverse derivative of Vc: V ′c

−1(ρ) = − 1
2αc

(ρ− vc). In our
model, c can adapt vc towards a bid in order to optimise his
utility. In a bid bc, we denote the adapted vc as v∗c :

bc(ρ) = − 1
2αc

(ρ− v∗c ) (2)

B. The two markets

Both markets A and B are populated by suppliers and flexi-
ble as well as inflexible consumers. We only model imbalance
of the demand side - inflexible consumers underestimate their
demand in market A and need balancing power in market B,
whereas flexible consumers do not require balancing power.
They can possibly sell balancing power, acting as suppliers on
market B. Both markets accept continuous quadratic functions
as bids and clear with a discriminatory pricing auction.

Let the upper limit of total demanded quantity in the market
be QU (we assume supply is not limited). Before market A is
cleared, each inflexible consumer i submits his ahead demand
bid bAi and all actors who are flexible and thus can supply bal-
ancing power (this includes suppliers and flexible consumers)
submit their bids bAf and bBf for both markets simultaneously
(all bids are formatted as described in Section III-A). We call
the market maker SO (System Operator). The SO uses all bids
bAi and bAf to clear market A and, as a result, allocates one part
of QU to be sold by suppliers and bought by consumers, called
QA. Another part, called Qopt, is allocated from suppliers and
flexible consumers as an option on balancing electricity and
is determined by the SO (Qopt is a ratio of QA and exceeds
the possible balancing demand, see Section III-Bc). Later, in
market B, some part QB ∈ [0, Qopt] of this option might
be executed: When the inflexible consumers announce their
demand ∈ [0, Qopt] in market B via their bids bBi , all balancing
supply bids bBf are used to clear market B, allocating balancing
power QB ∈ [0, Qopt]. We assume here that all suppliers and
flexible consumers can ramp up or regulate down fast enough
to supply up to Qopt for balancing, like e.g. with gas power
plants, batteries or EVs.

a) Aggregation of other actors: This work studies the
decision problem of one flexible consumer agent c and aggre-
gates all other market participants as functions. Following [15],
let D(ρ) → R be an aggregated demand function and
S(ρ) → R an aggregated supply function. We will use D,
S and their parameters with the superscripts A for market A
and B for market B. The subscript −c denotes explicitly that
the function does not include c. D and S for markets A and
B are given by

DA
−c(ρ) :=

[
DA
max − αAρ

]
≥0

SA(ρ) :=
[
βA(ρ− ρAmin)

]
≥0

(3)

DB(ρ) :=
[
DB
max − αBρ

]
≥0

SB−c(ρ) :=
[
βB(ρ− ρBmin)

]
≥0

(4)

where [X]≥0 denotes the maximum of X and 0,
DA
max, D

B
max denote the maximal demand, ρAmin, ρ

B
min denote

the minimal unit offer price and αA, αB as well as βA, βB ∈
[0, 1] are slope parameters.

Furthermore, QA = QAc + QA−c, where QAc is the amount
c buys in market A, and QA−c is the amount bought by all
other consumers. Similarly, QB = QBc +QB−c, where QB−c is
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generated by suppliers in addition to what they sold in market
A (or by flexible consumer selling downward regulation),
while QBc is a reduction in c’s consumption sold as downward
regulation (c actually consumes QAc −QBc ). Finally, we denote
with Qoptc the maximal reduction that c offers and with
Qopt−c = Qopt − Qoptc the maximal balancing power other
suppliers hold available.

Given aggregated demand and supply bids from all other
market participants, we model the residual supply function
SAres that c effectively faces in market A and the residual
demand function DB

res that c effectively faces in market B
(see also Fig. 1). In economic theory, residual supply is the full
market supply minus the quantity bought by other consumers
at each unit price ρ and residual demand is the full market
demand minus the quantity supplied by other generators (or
flexible consumers) at each unit price ρ [15]:

SAres(ρ) = SA(ρ)−DA
−c(ρ)

DB
res(ρ) = DB(ρ)− SB−c(ρ)

(5)

b) Market clearing: We now explain market clearing on
market B, where c is selling balancing power. For market A,
where c is buying, the same principle applies.

Given c’s bid bBc , the quantity QBc that c sells and the unit
price ρBc that c earns are found at the intersection of residual
demand and c’s bid, thus DB

res(ρ
B
c ) = bBc (ρBc ). However, we

also need to consider outcomes of this intersection that would
lead to invalid quantities, i.e. quantities not ∈ [0, Qoptc ]. This
restriction is not explicit in bBc . First, if DB

res(ρ
B
c ) < 0, c

sells nothing, as his bid bBc was too expensive. Furthermore,
QBc cannot exceed Qoptc (for SB−c, we assume that individ-
ual capacity constraints of the aggregated suppliers are not
exceeded and thus not relevant for the market clearing). c
is willing to sell Qoptc for a price of at least ρoptc (thus,
bBc (ρoptc ) = Qoptc ) and the SO is willing to pay at most
ρBSO (thus, DB

res(ρ
B
SO) = Qoptc ). If bBc (ρBc ) > Qoptc , we use a

discriminative (also called pay-as-bid) auction approach [11],
such that c will sell Qoptc at a unit price of ρoptc if ρoptc ≤ ρBSO
or sell nothing otherwise.

From now on, we denote with ρAc and ρBc the unit prices that
c earns on markets A and B, respectively. For c’s competitors,
we denote with ρA−c and ρB−c the prices they earn.

c) Market coupling: Two parameters of market B are
determined by the outcome of market A. First, we assume
that the maximum demand in market B is related to QA−c via a

ratio rm, such that DB
max = rmQ

A
−c

1−rm
. The SO can approximate

the ratio rm by experience. We assume for simplicity of our
mechanism that he approximates rm perfectly and allocates
Qopt = DB

max. Likewise, we assume that the SO uses rm also
for c individually2, so it always holds that Qoptc = rm ∗ QAc .
All other consumers are inflexible and thus use rm = 0, or we
assume they are flexible and their downward regulation offers
are aggregated in SB−c. As we explained earlier, we assume in
this work that all suppliers can supply without limit, so we
do not set rm for suppliers or flexible consumers besides c.

2Of course, a more detailed model would assume that bidders prefer
different values for rm. We proposed a market clearing mechanism in which
bidders can submit several bids with different values for r in [4].

TABLE I
SUMMARY OF PARAMETERS3

Parameter Description
vc maximal valuation of c
αc slope of c’s valuation function

Dmax maximal demand of demand functions DA−c and DB

α slope of demand functions
ρmin min. price of supply functions SA and SB−c
β slope of supply functions
k noise parameter
rm describes ratio between QA (all demand) and DBmax

(reserve demand) as well as between QAc and Qoptc

Second, we assume that in SB−c, ρ
A
−c is used as the minimum

price in market B (which is denoted by ρBmin, see (4)).
d) Uncertainty: c approximates the residual functions

SAres and DB
res with some uncertainty. We model this by noise

parameters kA and kB , with which we multiply the minimal
price of suppliers in SA and SB−c (see (3) and (4)):

SA(ρ, kA) = βA(ρ− ρAminkA)

SB−c(ρ, k
B) = βB(ρ− ρBminkB)

(6)

C. The bid optimisation problem

c has two bids to construct (we call them bAc and bBc ),
one for market A and one for market B. We now consider
the optimisation of bids in terms of the utility across all
transactions for c. Overall, c’s utility Uc is the valuation of
the electricity he can use for himself, minus the price he pays
for his initial allocation in market A, plus revenues through
downward regulation in market B:

Uc = (QAc −QBc )Vc(QAc −QBc )−QAc ρAc +QBc ρ
B
c (7)

However, to be able to estimate the effects of bids in both
markets separately, we define a surplus function for market A
and a profit function for market B. In market A, we consider
c’s valuation of consuming QAc and the costs of buying QAc .
In market B, we consider the reward for reducing demand and
denote the costs of c’s downward regulation by the (lost) utility
of the last QBc units in QAc (via the function V ec , see (9)):

surplusAc (bAc , k
A) = Vc(QAc )−QAc ρAc

profitsBc (bBc , b
A
c , k

B) = QBc ρ
B
c − V ec (QBc , Q

A
c )

(8)

V ec (QAc , Q
B
c ) = Vc(QAc )− Vc(QAc −QBc ) (9)

where QAc and ρAc , as well as QBc and ρBc , are determined
through market clearing (see Sections III-Bb and III-Bd), and
thus bAc and kA, as well as bBc and kB , are implicit in the right-
hand formulae. c’s maximal capacity in market A is given
by QUc and his maximal capacity in market B is given by
Qoptc = rm∗QA

c

1−rm
. Note that profitsBc is coupled to the results

of market A (and thus needs to consider bAc ), as QAc is used
in V ec as well as in the determination of Qoptc .

3With the exception of vc, αc, rm and Qoptc , we use them with superscripts
A or B to denote their usage in market A or B, respectively.
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We now formulate the bid optimisation problem for c, in
which c maximises his overall utility. It considers limited
ranges of noise parameters kA and kB , [kAmin, k

A
max] and

[kBmin, k
B
max], respectively. For the likelihood of kA and kB , let

the two probability lookup functions be probA(kA) → [0, 1]
and probB(kB) → [0, 1]. For each possible outcome for bid
bAc , c considers all possible outcomes for bid bBc :

arg max
bA

c ,b
B
c

[∫ kA
max

kA=kA
min

probA(kA) ∗

(
surplusAc (bAc , k

A)

+
∫ kB

max

kB=kB
min

probB(kB) ∗ profitsBc (bBc , b
A
c , k

B) dkB
)
dkA

]
(10)

IV. BID FORMATS

We define a benchmark format (which we call BENCH),
where c submits two independent bids. c submits a bid bAc
to market A, which is a demand function of the format
bAc (ρ) = − 1

2αc
∗ (ρ − v∗c ) (see Section III-A). The bid bBc

to market B is a constant price ρB∗c . The bid optimisation
problem does not differ from (10). We mark parameters with
∗ if c can adapt them in the bid. The BENCH bid format is
(for instance) similar to the market design of the US Midwest
system operator [2], which also requires simultaneous sub-
mission of bids to day-ahead and balancing market clearing,
where the former bid is non-linear and the latter a constant
price per MW.

In our proposed unified bid format (which we call UNI),
c only needs to submit one bid bc(ρ) = − 1

2αc
(ρ− v∗c ). Prices

for both ahead- and balancing power will be found on this
bid. First, the SO clears market A, using bc as bAc . Given the
outcome of market A (c buys QAc at unit price ρAc ), the SO
then constructs bid bBc from bc to submit to market B. Bid bBc
is based on bc, with v∗c replaced by ρAc and the slope inverted.
It is defined for the unit price ρBc in the range [ρAc , ρ

B
max],

where bc(ρBmax) = QAc −Qoptc . See bBc (ρ) in (11) and Fig. 1
for illustration.

Fig. 1. UNI bid format with market outcomes. The dotted part of bid bc
is translated into bid bBc . QAc and QBc are determined by intersection of c’s
bids with residual supply SAres and demand DBres.

By design, the UNI format has several advantages:

It reduces the complexity of c’s optimisation problem in (10)
from two to one dimension (only one bid bc is needed) and thus
substantially simplifies the computation that a bidding agent
has to perform (see (11)). Therefore, scheduling decisions can
be made fast, which is an important feature for smart grid
mechanisms.

arg max
bc

[∫ kA
max

kA=kA
min

probA(kA) ∗
(
surplusAc (bc, kA)

+
∫ kB

max

kB=kB
min

probB(kB) ∗ profitsBc (bBc , bc, k
B) dkB

)
dkA

]
where bBc (ρ) =

1
2αc

(ρ− ρAc )
(11)

It defines a realistic price for balancing power: ρBc ∈
[ρAc , ρ

B
max] relates to the actual reduction in (marginal) utility

that c suffers (according to his bid bc) when buying QBc in
market A, but not consuming it (because it is being sold on
market B). Thus, the price for balancing power is related to
the price on the ahead market. Varying the bid to exploit
market opportunities is still possible for c, but speculating
for profits on market B is not possible in separation from
the bid to market A. This is desirable, because two-settlement
market designs generally aim at increasing the activity on and
the importance of the ahead market stage. We will observe
this effect in our simulations (see Section V). Because the
slope of bBc is positive, ρBc ≥ ρAc , which reflects a natural
relation between ahead- and balancing prices. For example,
Oren (2000) [16] argues that balancing power is a good of
higher economic quality than day-ahead procurement because
of shorter delivery time and should be priced higher.

Furthermore, it guarantees c that sales on market B in-
crease c’s overall utility if c bids his marginal valuation
function as bc. As a benchmark, we consider c as an inflexible
consumer, who buys QAc and does not selling anything on
market B. His surplus SUR

′

c is given by:

SUR
′

c =
∫ QA

c

Q=0

(
bc(Q)− ρAc

)
dQ (12)

Now we consider the case in which c is flexible and active
on market B, selling any QBc ∈ [0, Qoptc ] at price ρBc . Let
us denote c’s utility in this case by U

′

c. We calculate U
′

c by
subtracting from SUR

′

c the loss of utility for QAc − QBc and
adding the revenues from selling QBc . For illustration, Fig. 1
shows in a grey area both the lost utility (on the right) and
the revenues from selling QBc (on the left). U

′

c is given by:

U
′

c = SUR
′

c −
∫ QA

c

Q=QA
c −QB

c

bc(Q) dQ+QBc ρ
B
c

= SUR
′

c +
∫ QB

c

Q=0

(
−bc(Q+QAc −QBc ) + ρBc

)
dQ

(13)
U
′

c is guaranteed to be larger than SUR
′

c, if we can show
that bc(Q+QAc −QBc ) ≤ ρBc for all Q ∈ [0, QBc ]. This is the
case, because bc(0 +QAc −QBc ) = ρBc and the slope of bBc is
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negative. Thus, we can conclude that c will make profits by
selling QBc when using the UNI format.

Finally, we can now show that the UNI format guarantees
that offering downward regulation increases c’s utility, com-
pared with an inflexible consumer that buys the same amount
of electricity. As a benchmark, let us again assume that c is
inflexible and offers nothing to market B (and thus Qoptc = 0).
Here, we assume that c buys exactly QAc −QBc in market A.
We denote the surplus for c in this case by SUR∗c , given by:

SUR∗c =
∫ QA

c −Q
B
c

Q=0

(
bc(Q)− ρBc

)
dQ (14)

where in this example, ρBc = bc(QAc − QBc ) denotes the
price c pays for QAc −QBc on market A (refer also to Fig. 1).

Let us now consider that c acts as a flexible consumer and
offers Qoptc on market B. To make this case comparable to
our benchmark case (which led to SUR∗c ), we assume that c
first buys QAc and then sells QBc ∈ [0, Qoptc ]. This leaves c
with QAc − QBc for his own usage, just as in the benchmark
case. We denote the utility c has in this case with U∗c . There
are two differences in U∗c with respect to SUR∗c : First, c pays
a lower unit price for his consumption of QAc −QBc , namely
ρAc instead of ρBc , and if the price difference of ρBc − ρAc is
positive, c’s utility will increase. Second, c sells QBc instead of
consuming it himself, and thus adds U

′

c −SUR
′

c to his utility
(see above). U∗c is given by:

U∗c = SUR∗c + (ρBc − ρAc )(QAc −QBc ) + U
′

c − SUR
′

c (15)

We have shown above that U
′

c − SUR
′

c is positive. We
now show that also (ρBc − ρAc )(QAc − QBc ) is positive, since
QAc ≥ QBc and ρBc ≥ ρAc (because ρBc = bc(QAc − QBc ) ≥
ρAc = bc(QAc ), as the slope of bc is negative). Thus, offering
reserves is profitable when c bids his marginal utility function,
by spending less money on the same amount of electricity and
also making profits from selling downward regulation.

We note that, if the market setting is not competitive and
thus consumers do not bid their marginal valuation functions
(e.g., they bid a lower valuation function), the UNI format
does not guarantee profits for c when offering downward
regulation. The SO can add an incentive ι when transforming
bc to bBc , such that bBc (ρ) = 1

2αc
(ρ−ρAc +ι). He might choose

to do so in a market mechanism as in [4], where bidders can
choose the r they want to bid on and the SO finds he needs
to incentivise bids with larger rm to allocate reserve capacity.

V. SIMULATION EXPERIMENTS

We construct two market scenarios and investigate several
settings in each, using a systematic parameter analysis. In
each setting, c constructs bids for markets A and B. We
then investigate the resulting market outcome via Monte Carlo
simulations.

A. Market scenarios

1) Oligopolistic market scenario: First, we define an
oligopolistic market scenario, which could for instance resem-
ble the situation in a microgrid. We model this scenario using

realistic settings from a wholesale power market simulation
study by Sun & Tesfatsion (2007) [7]. Both microgrids and
wholesale markets resemble oligopolistic market settings, be-
cause they are dominated by a small number of players. In [7],
several generators and a generic buyer profile are described for
24 hours of a day on an electricity wholesale market. Note that,
because we use settings from a wholesale market study, the
prices in our model are in $/MWh - but the general findings
of this model can also hold for markets which trade KWh. In
particular, the oligopolistic scenario corresponds to hour 8am
in that study (we chose that hour as it is similar to most other
hours and not an outlier).

We draw settings for the supply side by modeling an average
generator g from [7], with maximal production of QUg = 300,
a minimum unit cost Cg = 18.8 and a bid curve slope
Rg = 0.008. Furthermore, we assume that all generators in
our model have the same slope in their production costs. [7]
uses five generators in their model. Thus, we multiply the
slope of g’s marginal costs by five to get the slope of S−c:
β = 5

2Rg
. Finally, we assume that the minimal unit price of

S−c is 10% higher than g’s minimal unit costs: ρAmin = 1.1Cg .
As described in Section III-B, ρBmin is set to ρA−g .

The sum of the demand of all buyers in [7] is 900, or 3QUg .
We set DA

max = 3QUg (1 − rm). For the slope of the demand
functions, we use a survey report [17] that aggregates several
demand responsiveness studies. All studies in [17] measured
the price elasticity of demand, which denotes the percentage
change in quantity demanded in response to a one percent
change in price. [17] distinguishes between “long-run” and
“short-run” demand, where the latter allows less substitution of
demanded power by any alternative, similar to the situation in a
balancing market. The survey reports price elasticities between
0.7 and 2.1 for “long-run” scenarios (which we use for market
A) and between 0.03 and 0.5 in “short-run” scenarios (which
we use for market B). We take αA = 1.0 and αB = 0.2.

We model c in the following way: His maximum capacity is
QUc = QUg = 300. For the slope of the valuation function of a
flexible consumer, literature does not provide us with helpful
pointers. For this work, we choose αc = 0.008, mirroring the
slope of the cost function of our average generator g. Finally,
we aim at modeling Vc such that c’s valuation is close to
the market valuation and set vc = ρAB−c ∗ 1.1. ρAB−c is the
average price over markets A and B if c is not present. The
multiplication by 1.1 roughly compensates for the slope αc.

2) Competitive market scenario: We also design a second
scenario (using the oligopolistic scenario as a starting point),
in which we model two trends that are considered very
important for smart grids. First, we make the scenario more
competitive: we increase both the number of suppliers and
demand responsiveness tenfold. Second, we model the trend
towards increasing demand (e.g. through increasing market
penetration of electric vehicles) by doubling the overall de-
mand for electricity.

Table II lists all default settings for the two scenarios, where
the parameters for market B depend on the parameters of
market A. Furthermore, we run simulations with rm = 0.1,
which is a reserve level often in use today, as well as rm = 0.3,
a setting that is not unrealistic in the market scenarios we can
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TABLE II
DEFAULT SETTINGS FOR MARKET PARAMETERS IN THE OLIGOPOLISTIC

AND COMPETITIVE SCENARIO.

Name oligopolistic scenario competitive scenario
DAmax 3QUc (1− rm) 6QUc (1− rm)

αA 1.0 10.0

ρAmin 1.1Cg 1.1Cg
βA 5

2Rg

50
2Rg

DBmax
rmQA

1−rm

rmQA

1−rm

αB αA

5
αA

5
ρBmin ρA−c ρA−c
βB βA βA

expect in the upcoming 10 years, at least for the generators
that can offer significant reserve power (for example batteries
or gas power plants).

B. Method

We evaluated both scenarios in multiple settings using a
Monte-Carlo simulation, which we describe in more detail
in this section. For each setting, c constructs either two
bids bAc and bBc (with the BENCH format) or one bid
bc (with the UNI format). First, c performs a brute-force
search on bid parameter settings: c evaluates 100 evenly-
spaced values for v∗c ∈ [ρAmin, vc] and, with the BENCH
format, also evaluates for each value of v∗c 100 evenly-spaced
values for ρB∗c ∈ [ρAmin, ρ

B
max], where SAres(ρ

A
min, 1) = 0 and

DB
res(ρ

B
max, 1) = 0. Starting with the most promising point

from the brute force evaluations, c then applies a downhill
simplex algorithm [18] to maximise his expected utility.

We sample the outcomes for each setting 100 times. Each
sample uses a new pair of the noise parameters kA and kB ,
generated by the Mersenne twister pseudo-random number
generation algorithm. We assume kA and kB to be distributed
normally and thus have to choose means and standard devia-
tions in both markets A and B. We set the means to 1. We
explain our choice for the standard deviation s in each market
using market B as an example: We denote with ρmax the max-
imal unit price in the market (such that DB

res(ρmax, 1) = 0).
We then define s such that Dc(ρmin, 1 + φs) = 0, where
ρmin is the minimal price of SB−c (see Section III-B) and φ is
a scaling parameter normally set to 1.

The difference of ρmax − ρmin is dependent on the market
setting and also differs in markets A and B. Thus, the noise
in the market is proportional to the maximal price variation
in residual supply or demand. During the bid optimisation, c
considers values for k ∈ [kmin = 1− 3s, kmax = 1 + 3s].

To test for the stability of results, we varied several of
the parameters. In both scenarios, we varied φ ∈ [0, 3],
vc ∈ [21, 1.3ρAB−c ], αc ∈ [0, 0.01] and rm ∈ [0, 0.3]. In
the oligopolistic scenario, we varied αA ∈ [0, 5], DA

max ∈
[2QUg (1−rm), 5QUg (1−rm)]. In the competitive scenario, we
varied αA ∈ [5, 15], DA

max ∈ [4QUg (1− rm), 10QUg (1− rm)].

C. Observations

We begin by validating the market model for several impor-
tant properties: c’s overall utility is positive with both formats

across all settings and, in comparison to the oligopolistic
scenario, the competitive scenario has lower market prices and
a lower utility for c. We now compare the two formats.

Observation 1: Both formats reach a comparable utility in
a wide range of market conditions, but show different bidding
behaviour. Under default conditions in both the oligopolistic
and the competitive scenario, c is more active on both markets
when using the UNI format: in market A, c buys more
QAc at a higher price ρAc and in market B, he sells more
QBc . However, the formats show no significant4 difference
in the utility which c achieves over all transactions. This
observation is present in all our parametrised market settings
(see Section V-B), with the only exceptions of very high values
for vc and very low values for αc.

Observation 2: c’s offer for downward regulation is indeed
executed with the UNI format, but not with the BENCH
format. With the UNI format, c consistently sells downward
regulation across most market settings. However, when using
the BENCH format, c bids a price ρB∗c that is too high in
the given market setting, such that he sells no QBc or, when
compared to the UNI format, very little QBc . The parameters
that have the largest influence on c’s activity on market B
are φ, vc and αc. First, the more uncertain c is about market
outcomes (with increasing φ, refer to Section V-B), the less
downward regulation he sells when he uses the BENCH
format (because he increases his bid on market B), while c
sells a constant amount when using the UNI format. Second,
in settings where c’s valuation of electricity is higher than
the market’s valuation (with high values vc and αc, refer to
Section V-A), c does not sell any QBc with the BENCH
format (because he bids too high prices in market B), while
he sells stable amounts when using the UNI format (see e.g.
Fig. 2 for an example).

Fig. 2. QBc , with one standard deviation, against increasing maximal utility
of c (oligopolistic scenario, rm = 0.3). The dotted line indicates the standard
setting.

D. Discussion of observations

Let us first discuss observation 1, describing that despite
different bidding behaviours, the two bid formats can reach a

4We performed Student’s T-Tests and tested for p ≤ 0.01.
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comparable utility. In most settings we studied, multiple near-
optimal combinations of quantities and prices exist. Though
the UNI format is less flexible than the BENCH format
(because bids bAc and bBc are based on one bid bc), it is likely
to find a bid bc that realises one of them, as is evident in the
good performance across all settings. This feature makes the
UNI format attractive to use for bidders.

Our second observation noted that with the UNI format, c
will offer his downward regulation at acceptable prices, which
makes the UNI format attractive to the system designer.
In particular, we saw that increasing noise leads c with the
BENCH format to raise prices on market B. This is because
both the bid to market B (ρB∗c ) and the residual demand
function for balancing power (DB

res) react only very little to
changes in price: The former is a constant price, and the latter
has a low slope. Thus, the intersection of both varies strongly
along the quantity axis (which can also be seen in Fig. 2).
Thus, the BENCH format increases the risk of having to
reserve Qoptc , but then selling too little QBc due to noise,
which lowers overall utility. Therefore, c raises his bid bBc to
cover the risk when uncertainty increases. This is not the case
for the UNI format, as here, c submits a positively-sloped
bid function to market B, which reduces variation along the
quantity axis and leads to more precise predictions.

We also observed that with the BENCH format, c in-
creases prices on market B to withhold QBc with large vc and
low αc. The reason is that, when c’s valuation of electricity
is much higher than the market’s valuation, it is optimal for
c to withhold QAc from market B. However, the UNI format
requires c to offer balancing power at realistic prices, so in
these market settings, c cannot raise his bid to market B to
unacceptable prices.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel approach to balancing
in smart grids, which allows flexible consumers to offer
downward regulation as reserve for the balancing market.
We present a novel two-settlement electricity auction which
uses a unified bid format (the UNI format). Optimising bids
with the UNI format requires much less computation power
when compared to a benchmark format with two independent
bids, and therefore consumers can react fast. The auction
guarantees that offering downward regulation is profitable
to consumers. Furthermore, we show through parametrised
Monte-Carlo simulations that the UNI format, despite its
simplicity of use, attains the same utility as the benchmark
format under a wide range of market conditions. Finally,
it ensures that c’s offer for downward regulation is indeed
executed with the UNI format, which is often not the case
with the benchmark format.

The decision-theoretic approach taken in this work gives
first insights into this complex problem setting. However,
future work could further evaluate the UNI format in more
complex multiagent settings which run for multiple trade
periods. It could also look into an extended market mechanism
where individual bid slopes αc and ratios rc per bidder are
allowed (see also [4]).
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